PROOF OF A CONJECTURE OF KOSTANT

DRAGOMIR Ž. ĐOKOVIĆ

ABSTRACT. Let $\mathfrak{g}_0=\mathfrak{k}_0+\mathfrak{p}_0$ be a Cartan decomposition of a semisimple real Lie algebra and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ its complexification. Denote by G the adjoint group of \mathfrak{g} and by G_0,K,K_0 the connected subgroups of G with respective Lie algebras $\mathfrak{g}_0,\mathfrak{k},\mathfrak{k}_0$. A conjecture of Kostant asserts that there is a bijection between the G_0 -conjugacy classes of nilpotent elements in \mathfrak{g}_0 and the K-orbits of nilpotent elements in \mathfrak{p} which is given explicitly by the so-called Cayley transformation. This conjecture is proved in the paper.

1. Introduction. Let $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ be a Cartan decomposition of a real semisimple Lie algebra and let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be its complexification. Denote by G the adjoint group of \mathfrak{g} and by K resp., G_0 , K_0 the connected Lie subgroup of G with \mathfrak{k} resp., \mathfrak{g}_0 , \mathfrak{k}_0 as its Lie algebra. We consider the adjoint action of G and G_0 and their restrictions to the subgroups K and K_0 , respectively.

According to D. King [7] it was conjectured by B. Kostant that there is a bijection between the G_0 -conjugacy classes of nilpotent elements in \mathfrak{g}_0 and the K-conjugacy classes of nilpotent elements in \mathfrak{p} given explicitly by the so-called Cayley transformation. Of course it suffices to consider the case when \mathfrak{g}_0 is simple If \mathfrak{g}_0 is of classical type then the conjecture has been verified recently by D. King [7] using case by case considerations.

In this paper we give a proof of Kostant's conjecture (in full generality) by a completely different method. Our proof is based on Vinberg's work on the classification of nilpotent elements in graded Lie algebras.

The tables of nilpotent K-orbits in $\mathfrak p$ for exceptional simple Lie algebras $\mathfrak g$ will be submitted for publication elsewhere. These tables then can be considered as a classification of nilpotent G_0 -conjugacy classes in $\mathfrak g_0$. When $\mathfrak g_0$ is of Cartan type EV this was accomplished by Antonyan [1], but he does not indicate which nilpotent K-orbits in $\mathfrak p$ belong to the same G-orbit.

I would like to thank D. King for sending me his preprint [7]. It was this preprint that prompted me to look for a direct proof of Kostant's conjecture.

2. Notations and definitions. \mathfrak{g}_0 will be a finite-dimensional real Lie algebra and $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ its Cartan decomposition. Its complexification will be written as $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$.

G denotes the adjoint group of \mathfrak{g} and for each subalgebra of \mathfrak{g} , denoted by a german letter (possibly with a subscript), the corresponding connected Lie subgroup

Received by the editors February 5, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 17B20, 22E60; Secondary 17B45.

The support through the NSERC Grant A-5285 is gratefully acknowledged.

of G will be denoted by the corresponding uppercase italic letter (and the same subscript).

If \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and α a root of $(\mathfrak{g},\mathfrak{h})$ then \mathfrak{g}^{α} will denote the corresponding root space of \mathfrak{g} .

Let $\mathfrak{s} = \bigoplus \mathfrak{s}_k$ be a Z-graded complex semisimple Lie algebra. Then there is a unique element $H \in \mathfrak{s}$ such that $\mathfrak{s}_k = \{X \in \mathfrak{s} \colon [H,X] = kX\}$ for all $k \in \mathbf{Z}$. Clearly $H \in \mathfrak{s}_0$ and we call H the defining element of this **Z**-graded algebra. Since H determines the gradation of \mathfrak{s} we shall refer to this **Z**-graded Lie algebra as (\mathfrak{s}, H) .

If $\mathfrak{s} = \bigoplus \mathfrak{s}_k$ is **Z**-graded then by using the canonical surjection $\mathbf{Z} \to \mathbf{Z}_2 := \mathbf{Z}/2\mathbf{Z}$ we obtain a \mathbf{Z}_2 -grading of \mathfrak{s} which we call the associated \mathbf{Z}_2 -grading.

The algebra $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ is a \mathbb{Z}_2 -graded Lie algebra. A \mathbb{Z} -graded subalgebra of this \mathbb{Z}_2 -graded algebra is a \mathbb{Z} -graded subalgebra $\mathfrak{s} = \bigoplus \mathfrak{s}_k$ of \mathfrak{g} such that $\mathfrak{s}_k \subset \mathfrak{k}$ for k even and $\mathfrak{s}_k \subset \mathfrak{p}$ for k odd.

By θ we denote the automorphism of \mathfrak{g}_0 which is 1 on \mathfrak{k}_0 and -1 on \mathfrak{p}_0 . We also denote by θ its extension to a complex automorphism of \mathfrak{g} .

By σ we denote the conjugation of \mathfrak{g} with respect to its real form \mathfrak{g}_0 . If \mathfrak{s} is a σ -stable subalgebra of \mathfrak{g} then by \mathfrak{s}^{σ} we denote the subalgebra of \mathfrak{s} consisting of elements of \mathfrak{s} fixed by σ .

A **Z**-graded semisimple Lie algebra $\mathfrak{g} = \bigoplus \mathfrak{s}_k$ is called *locally flat* if $\dim \mathfrak{s}_0 = \dim \mathfrak{s}_1$. In that case the group S_0 has precisely one open orbit in \mathfrak{s}_1 under the adjoint action and we shall refer to any element of that orbit as a *generic element* of \mathfrak{s}_1 . For each generic element $X \in \mathfrak{s}_1$ the centralizer of X in S_0 is finite. If this centralizer is trivial then we say that this **Z**-graded algebra is *flat*. These definitions are due to Vinberg [11].

A subalgebra of \mathfrak{g} is called regular if it is normalized by some Cartan subalgebra of \mathfrak{g} . A nonzero nilpotent element $X \in \mathfrak{g}$ and its G-conjugacy class $G \cdot X$ are said to be semiregular (in \mathfrak{g}) if $G \cdot X$ does not meet any proper regular semisimple subalgebra of \mathfrak{g} . Given any nonzero nilpotent element $X \in \mathfrak{g}$ there exists a regular semisimple subalgebra \mathfrak{s} of \mathfrak{g} such that $G \cdot X \cap \mathfrak{s}$ is nonempty and every element of this intersection is semiregular in \mathfrak{s} . Dynkin's classification of nilpotent G-conjugacy classes of \mathfrak{g} is based on the classification of semiregular nilpotent classes. The semiregular nilpotent G-conjugacy classes are also discussed by Elkington [6].

Let $X \neq 0$ be a nilpotent element of \mathfrak{g} . By a theorem of Morozov there exist $H, Y \in \mathfrak{g}$ such that

$$[X,Y] = -H, \quad [H,X] = 2X, \quad [H,Y] = -2Y.$$

Following Bourbaki [3] we shall call such triple (X, H, Y) an \mathfrak{sl}_2 -triple. (Usually one replaces the equality [X, Y] = -H by [X, Y] = H in the above definition but we make this departure in order to conform with the terminology of [3].)

A real Cayley triple is an \mathfrak{sl}_2 -triple (E, H, F) in \mathfrak{g}_0 such that $\theta(E) = F$. This implies that $\theta(F) = E$, $\theta(H) = -H$ and consequently $H \in \mathfrak{p}_0$, $E + F \in \mathfrak{k}_0$, and $E - F \in \mathfrak{p}_0$.

A complex Cayley triple is an \mathfrak{sl}_2 -triple (E,H,F) in \mathfrak{g} such that $E,F\in\mathfrak{p}$ and $\sigma(E)=-F$. It follows that $\sigma(F)=-E$, $\sigma(H)=-H$, $H\in i\mathfrak{k}_0$, $E+F\in i\mathfrak{p}_0$, and $E-F\in\mathfrak{p}_0$.

Clearly K_0 acts by adjoint action on both real and complex Cayley triples. The Cayley transfrom c is a map from real to complex Cayley triples defined by

$$c(E,H,F) = \left(\frac{1}{2}(H+iF-iE), i(E+F), \frac{1}{2}(-H+iF-iE)\right).$$

It is easy to check that this map is bijective and K_0 -equivariant and that its inverse is given by

$$c^{-1}(E, H, F) = (\frac{i}{2}(E + F - H), E - F, -\frac{i}{2}(E + F + H)).$$

Hence c induces a bijection \bar{c} from the set of K_0 -conjugacy classes of real Cayley triples to the set of K_0 -conjugacy classes of complex Cayley triples.

An \mathfrak{sl}_2 -triple (E, H, F) in \mathfrak{g} is called *normal* if $E, F \in \mathfrak{p}$ and $H \in \mathfrak{k}$. They have been studied extensively by Kostant and Rallis [8].

3. Some known results. Define a map ϕ from the set of K_0 -conjugacy classes of real Cayley triples to the set of nonzero nilpotent G_0 -orbits in \mathfrak{g}_0 by assigning to the class containing the real Cayley triple (E, H, F) the orbit $G_0 \cdot E$. It is shown by King [7, Lemma 1.1] that ϕ is surjective.

Each K_0 -conjugacy class of complex Cayley triples is contained in a unique K-conjugacy class of normal \mathfrak{sl}_2 -triples. Hence the inclusion relation defines a map ψ_0 from the set of K_0 -conjugacy classes of complex Cayley triples to the set of K-conjugacy classes of normal \mathfrak{sl}_2 -triples. King shows that $\psi \circ \bar{c} \circ \phi^{-1}$ is a well-defined map from the set of nonzero nilpotent G_0 -orbits in \mathfrak{g}_0 to the set of K-orbits of normal \mathfrak{sl}_2 -triples (the proof is in the paragraph following Remark 1.1). He also shows that this map is injective. His proof of this fact is based on a theorem of Kostant and Rao the proof of which was published by D. Barbasch [2, Proposition 3.1]. These proofs will not be reproduced here. In the Addendum we show that ϕ is also injective.

Let ψ_1 be the map from the set of K-conjugacy classes of normal \mathfrak{sl}_2 -triples to the set of nonzero nilpotent K-orbits in \mathfrak{p} which assigns to the class containing the normal \mathfrak{sl}_2 -triple (E,H,F) the orbit $K \cdot E$. Kostant and Rallis [8, Proposition 4] have shown that ψ_1 is bijective.

Now we can state Kostant's conjecture: The map $\psi_1 \circ \psi_0 \circ \bar{c} \circ \phi^{-1}$ from nonzero nilpotent G_0 -orbits in \mathfrak{g}_0 to nonzero nilpotent K-orbits in \mathfrak{p} is bijective. Some partial results in connection with this conjecture have been obtained by L. Preiss-Rothschild [9].

From the results stated above we know that this map is injective. This is the content of Proposition 1.2 in [7].

In order to complete the proof of the conjecture it remains to prove that ψ_0 is also surjective, i.e., that every K-conjugacy class of normal \mathfrak{sl}_2 -triples in \mathfrak{g} contains a complex Cayley triple. Equivalently, it suffices to show that the map $\psi \colon = \psi_1 \circ \psi_0$ is surjective. That will be accomplished in §5.

The following lemma will be needed for our proof. The validity of this lemma follows from the description of nilpotent G-orbits in \mathfrak{g} , which was accomplished by Dynkin [5] (see also [6]) and the description of flat Lie algebras in [11 or 12].

LEMMA 1. Let (E, H, F) be an \mathfrak{sl}_2 -triple in \mathfrak{g} with E a semiregular nilpotent in \mathfrak{g} . Then $\mathrm{ad}(H/2)$ has integer eigenvalues, the \mathbf{Z} -graded Lie algebra $(\mathfrak{g}, H/2) = \bigoplus_{k \in \mathbf{Z}} \mathfrak{s}_k$ is flat, and E is a generic element of \mathfrak{s}_1 .

4. Basic lemma. For the proof of the basic lemma we need the following technical lemma.

LEMMA 2. Assume that rank $\mathfrak{k} = \operatorname{rank} \mathfrak{g}$, fix a Cartan subalgebra \mathfrak{h}_0 of \mathfrak{k}_0 and let $\mathfrak{h} = \mathfrak{h}_0 + i\mathfrak{h}_0$. Let R be the root system of $(\mathfrak{g}, \mathfrak{h})$ and

$$R^{(0)} = \{ \alpha \in R \colon \mathfrak{g}^{\alpha} \subset \mathfrak{k} \}, \quad R^{(1)} = \{ \alpha \in R \colon \mathfrak{g}^{\alpha} \subset \mathfrak{p} \}.$$

Then there exists a Chevalley system $(X_{\alpha}), \alpha \in R$, of $(\mathfrak{g}, \mathfrak{h})$ such that

$$\sigma(X_{\alpha}) = (-1)^k X_{-\alpha}, \qquad \alpha \in R^{(k)}.$$

(For the definition of Chevalley systems see [3, Chapitre VIII, §3, no. 4, p. 84].)

PROOF. Let (Y_{α}) , $\alpha \in R$, be any Chevalley system of $(\mathfrak{g}, \mathfrak{h})$.

The R-span of \mathfrak{h}_0 and the vectors $Y_{\alpha} + Y_{-\alpha}$, $i(Y_{\alpha} - Y_{-\alpha})$, $\alpha \in R^{(0)}$; and $i(Y_{\alpha} + Y_{-\alpha})$, $Y_{\alpha} - Y_{-\alpha}$, $\alpha \in R^{(1)}$; are a real form $\mathfrak{g}^{\#}$ of \mathfrak{g} isomorphic to \mathfrak{g}_0 . Choose an isomorphism $\tau \colon \mathfrak{g}^{\#} \to \mathfrak{g}_0$ such that $\tau(\mathfrak{h}_0) = \mathfrak{h}_0$ and extend τ to an automorphism of \mathfrak{g} . Set $X_{\alpha} = \tau(Y_{\alpha})$. Then (X_{α}) , $\alpha \in R$, is a Chevalley system of $(\mathfrak{g},\mathfrak{h})$ having the required properties.

Now we can prove our basic lemma.

LEMMA 3. Let $(\mathfrak{g}, H/2) = \bigoplus \mathfrak{s}_k$, $k \in \mathbf{Z}$, be a simple flat complex Lie algebra and assume that the associated \mathbf{Z}_2 -grading on \mathfrak{g} coincides with $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Then there exists $X \in \mathfrak{s}_1$ such that

$$[X, \sigma(X)] = H.$$

PROOF. Fix a Cartan subalgebra \mathfrak{h}_0 of \mathfrak{k}_0 such that $\mathfrak{h}_0 \subset \mathfrak{s}_0$ and set $\mathfrak{h} = \mathfrak{h}_0 + i\mathfrak{h}_0$. Let **R** be the root system of $(\mathfrak{g}, \mathfrak{h})$ and for $k \in \mathbf{Z}$ let

$$R_k = \{ \alpha \in R \colon \mathfrak{g}^\alpha \subset \mathfrak{s}_k \}.$$

Also define

$$R^{(0)} = \bigcup_{k \in \mathbf{Z}} R_{2k}, \quad R^{(1)} = \bigcup_{k \in \mathbf{Z}} R_{2k+1}.$$

By Lemma 2 there exists a Chevalley system $(X_{\alpha}), \alpha \in R$, such that

$$\sigma(X_{\alpha}) = (-1)^k X_{-\alpha}, \qquad \alpha \in R^{(k)}.$$

For $\alpha \in R_1$ let $Y_{\alpha} = -X_{-\alpha}$. Let H_{α} be the unique element of $[\mathfrak{g}^{\alpha}, \mathfrak{g}^{-\alpha}]$ such that $\alpha(H_{\alpha}) = 2$. Recall that $[X_{\alpha}, X_{-\alpha}] = -H_{\alpha}$, $\alpha \in R$, and so $[X_{\alpha}, Y_{\alpha}] = H_{\alpha}$ for $\alpha \in R_1$.

We shall seek a solution of equation (1) in the form

$$X = \sum_{\alpha \in R_1} \lambda_\alpha X_\alpha$$

with all λ_{α} real. Then

$$\sigma(X) = \sum_{\alpha \in R_1} \lambda_{\alpha} Y_{\alpha}$$

and equation (1) can be written as

(2)
$$\sum_{\alpha,\beta\in R_1} \lambda_{\alpha} \lambda_{\beta}[X_{\alpha}, Y_{\beta}] = H.$$

Assume first that our flat Lie algebra $(\mathfrak{g}, H/2)$ is principal, i.e., that R_1 is a base, say B, of R. In that case $\alpha - \beta \notin R$ for $\alpha, \beta \in B$ and so (2) becomes

$$\sum_{\alpha \in B} \lambda_{\alpha}^2 H_{\alpha} = H.$$

Since $\alpha(H) = 2$ for all $\alpha \in B$, this equation is equivalent to the system

(3)
$$\sum_{\beta \in B} \alpha(H_{\beta}) \lambda_{\beta}^{2} = 2, \qquad \alpha \in B.$$

By a theorem of Vinberg [10, Theorem 3] the unique solution μ_{β} , $\beta \in R$, of the system of linear equations

$$\sum_{\beta \in B} \alpha(H_{\beta}) \mu_{\beta} = 2, \qquad \alpha \in B,$$

is positive in the sense that $\mu_{\beta} > 0$ for each $\beta \in B$. It follows that the system (3) has a real solution.

Next assume that $(\mathfrak{g}, H/2)$ is the simple flat Lie algebra $D_{n+m+1}(a_m), n > m \geq 1$, see [5 or 6]. In this case we shall use the notations for roots, the Chevalley system, etc., given in Bourbaki [3, Chapitre VIII, §13, no. 4, pp. 206–212]. Then H/2 is the diagonal matrix of order 2n+2m+2 whose diagonal entries are the integers $n, n-1, \ldots, -n$ and $m, m-1, \ldots, -m$ arranged in nonincreasing order. The set R_1 consists of the roots

$$\begin{split} &\varepsilon_{i}-\varepsilon_{i+1}, & 1\leq i\leq n-m; & \varepsilon_{n-m}-\varepsilon_{n-m+2}; \\ &\varepsilon_{n-m+2k-1}-\varepsilon_{n-m+2k+1}, & \varepsilon_{n-m+2k}-\varepsilon_{n-m+2k+1}, & 1\leq k\leq m; \\ &\varepsilon_{n-m+2k-1}-\varepsilon_{n-m+2k+2}, & \varepsilon_{n-m+2k}-\varepsilon_{n-m+2k+2}, & 1\leq k\leq m-1; \end{split}$$

and

$$\varepsilon_{n+m-1} + \varepsilon_{n+m+1}, \quad \varepsilon_{n+m} + \varepsilon_{n+m+1}.$$

In this case some of the λ_{α} can be taken to be zero. An explicit solution of equation (1) is provided by

$$X = \lambda_1 X_{\varepsilon_1 - \varepsilon_2} + \lambda_2 X_{\varepsilon_2 - \varepsilon_3} + \dots + \lambda_{n-m} X_{\varepsilon_{n-m} - \varepsilon_{n-m+1}}$$

$$+ \mu_1 X_{\varepsilon_{n-m+1} - \varepsilon_{n-m+3}} + \nu_1 X_{\varepsilon_{n-m+2} - \varepsilon_{n-m+4}}$$

$$+ \mu_2 X_{\varepsilon_{n-m+3} - \varepsilon_{n-m+5}} + \nu_2 X_{\varepsilon_{n-m+4} - \varepsilon_{n-m+6}}$$

$$+ \dots$$

$$+ \mu_{m-1} X_{\varepsilon_{n+m-3} - \varepsilon_{n+m-1}} + \nu_{m-1} X_{\varepsilon_{n+m-2} - \varepsilon_{n+m}}$$

$$+ \rho_1 X_{\varepsilon_{n+m-1} - \varepsilon_{n+m+1}} + \sigma_1 X_{\varepsilon_{n+m-1} - \varepsilon_{n+m+1}}$$

$$+ \rho_2 X_{\varepsilon_{n+m} - \varepsilon_{n+m+1}} + \sigma_2 X_{\varepsilon_{n+m} + \varepsilon_{n+m+1}}$$

where

$$\begin{split} \lambda_k^2 &= k(2n-k+1), & 1 \leq k \leq n-m; \\ \mu_k^2 &= (n-m)(n+m+1) + k(2m-k+1), & 1 \leq k \leq m-1; \\ \nu_k^2 &= k(2m-k+1), & 1 \leq k \leq m-1; \end{split}$$

and $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 + i\sigma_2 = \pm \sqrt{w}$ with z and w complex numbers satisfying z + w = (n - m)(n + m + 1), $|z| = |w| = m^2 - 3m + 4 + \frac{1}{2}(n - m)(n + m + 1)$.

We omit the routine details of the verification of this claim.

There remain five exceptional simple flat Lie algebras to be dealt with, namely, $E_8(a_1)$, $E_8(a_2)$, $E_7(a_1)$, $E_7(a_2)$, and $E_6(a_1)$. In order to exhibit an explicit solution of (1) it will be convenient to use the Chevalley system of E_8 constructed in our paper [4]. For the convenience of the reader we shall review some basic facts about this Chevalley system.

The Lie algebra E_8 is realized as **Z**-graded algebra $\mathfrak{g}=\bigoplus_{k\in\mathbf{Z}}\mathfrak{s}_k$ where $\mathfrak{s}_0=V\otimes V^*$, $\mathfrak{s}_1=\bigwedge^3V$, $\mathfrak{s}_{-1}=\bigwedge^3V^*$, $\mathfrak{s}_2=\bigwedge^2V$, $\mathfrak{s}_{-2}=\bigwedge^2V^*$, $\mathfrak{s}_3=V$, $\mathfrak{s}_4=V^*$ and $\mathfrak{s}_k=0$ otherwise. Here V denotes a complex vector space of dimension 8 with a fixed basis e_k , $1\leq k\leq 8$, and V^* its dual space with the dual basis e^k , $1\leq k\leq 8$.

For the definition of the Lie bracket see [4]. We mention only that $\mathfrak{s}_0 \cong \mathfrak{gl}(V)$, that the action of \mathfrak{s}_0 on each \mathfrak{s}_k is the standard one, and that

$$[a \wedge b \wedge c, f \wedge g \wedge h] = - \begin{vmatrix} f(a) & f(b) & f(c) & f \\ g(a) & g(b) & g(c) & g \\ h(a) & h(b) & h(c) & h \\ a & b & c & 1/3 \end{vmatrix}$$

where $a, b, c \in V$, $f, g, h \in V^*$ and when evaluating this determinant the product of, say, a and f should be written as $a \otimes f$.

Using the formula (4) one finds that

$$[e_{ijk}, e^{rjk}] = e_i^r$$

if $i \neq r$, i < j < k, and r < j.

Writing $e_i^j = e_i \otimes e^j$, the subspace \mathfrak{h} spanned by the elements e_i^i , $1 \leq i \leq 8$, is a Cartan subalgebra of \mathfrak{s}_0 and of \mathfrak{g} . The Chevalley system of $(\mathfrak{g},\mathfrak{h})$ is given by the elements:

$$\begin{split} e_i^j, -e_j^i & \quad (1 \leq i < j \leq 8); \\ e_i, -e^i & \quad (1 \leq i \leq 8); \\ e_{ijk}, -e^{ijk} & \quad (1 \leq i < j < k \leq 8); \\ e_{ij}, e^{ij} & \quad (1 \leq i < j \leq 8); \end{split}$$

where $e_{ijk} = e_i \wedge e_j \wedge e_k$, $e^{ijk} = e^i \wedge e^j \wedge e^k$, etc.

In [4] λ_i , $1 \le i \le 8$, is a basis of \mathfrak{h}^* dual to the basis e_i^i , $1 \le i \le 8$, of \mathfrak{h} . A base B of the root system R of $(\mathfrak{g},\mathfrak{h})$ consists of the roots $\lambda_i - \lambda_{i+1}$, $1 \le i \le 7$, and the root $\lambda_6 + \lambda_7 + \lambda_8$:

$$\lambda_1 - \lambda_2$$
 $\lambda_2 - \lambda_3$ $\lambda_3 - \lambda_4$ $\lambda_4 - \lambda_5$ $\lambda_5 - \lambda_6$ $\lambda_6 - \lambda_7$ $\lambda_7 - \lambda_8$

$$\lambda_6 + \lambda_7 + \lambda_8$$

For $\alpha \in B$ the elements $H_{\alpha} \in \mathfrak{h}$ are given by

$$\begin{split} h_i &:= H_{\lambda_i - \lambda_{i+1}} = e_i^i - e_{i+1}^{i+1}, & 1 \leq i \leq 7, \\ h_8 &:= H_{\lambda_6 + \lambda_7 + \lambda_8} = -\frac{1}{3} + e_6^6 + e_7^7 + e_8^8, \end{split}$$

whence $-\frac{1}{3}$ means $-\frac{1}{3}$. $\sum_{i=1}^{8} e_i^i$.

Case $E_8(a_1)$. In this case we have

$$H = 46h_1 + 90h_2 + 132h_3 + 172h_4 + 210h_5 + 142h_6 + 72h_7 + 106h_8,$$

and R_1 consists of the roots $\lambda_i - \lambda_{i+1}$, $i \neq 5$, $\lambda_6 + \lambda_7 + \lambda_8$, $\lambda_4 - \lambda_6$, $\lambda_5 - \lambda_7$, and $\lambda_5 + \lambda_7 + \lambda_8$.

An explicit solution of (1) is given by

$$X = \sqrt{46}e_1^2 + \sqrt{90}e_2^3 + \sqrt{132}e_3^4 + \rho_1e_4^5 + \sigma_1e_6^7 + \sqrt{72}e_7^8 + \sqrt{106}e_{678} + \rho_2e_4^6 + \sigma_2e_5^7$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 - i\sigma_2 = \pm \sqrt{w}$ and z and w are complex numbers such that |z| = 172, |w| = 142, z + w = -106.

Case $E_8(a_2)$. We have

$$H = 38h_1 + 74h_2 + 108h_3 + 142h_4 + 174h_5 + 118h_6 + 60h_7 + 88h_8$$

 R_1 consists of the roots $\lambda_i - \lambda_{i+1}$, $i \neq 3, 5$; $\lambda_6 + \lambda_7 + \lambda_8$, $\lambda_2 - \lambda_4$, $\lambda_3 - \lambda_5$, $\lambda_4 - \lambda_6$, $\lambda_5 - \lambda_7$, and $\lambda_5 + \lambda_7 + \lambda_8$. A solution of (1) is provided by

$$X = \sqrt{38}e_1^2 + \sqrt{74}e_2^3 + \sqrt{34}e_4^5 + \rho_1e_6^7 + \sqrt{60}e_7^8 + \sigma_1e_{678} + \sqrt{108}e_3^6 + \rho_2e_5^7 + \sigma_2e_{578}$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 + i\sigma_2 = \pm \sqrt{w}$ and z and w are complex numbers such that |z| = 118, |w| = 88, z + w = 74.

Formula (5) is useful when one checks that X is indeed a solution.

Case $E_7(a_1)$. We have

$$H = 21h_2 + 40h_3 + 57h_4 + 72h_5 + 50h_6 + 26h_7 + 37h_8$$

and R_1 is the same as in case $E_8(a_1)$ except that the root $\lambda_1 - \lambda_2$ should be omitted. A solution X of (1) is given by

$$X = \sqrt{21}e_2^3 + \sqrt{40}e_3^4 + \sigma_1 e_4^5 + \rho_1 e_6^7 + \sqrt{26}e_7^8 + \sqrt{37}e_{678} + \sigma_2 e_4^6 + \rho_2 e_5^7,$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 - i\sigma_2 = \pm \sqrt{w}$ and z and w are complex numbers satisfying |z| = 50, |w| = 57, z + w = -37.

Case $E_7(a_2)$. Now

$$H = 17h_2 + 32h_3 + 47h_4 + 60h_5 + 42h_6 + 22h_7 + 31h_8$$

and R_1 is the same as in the case $E_8(a_2)$ except that the root $\lambda_1 - \lambda_2$ should be omitted. A solution X of (1) is given by

$$X = \sqrt{17}e_2^3 + \sqrt{15}e_4^5 + \rho_1 e_6^7 + \sqrt{22}e_7^8 + \sigma_1 e_{678} + \sqrt{32}e_3^6 + \rho_2 e_5^7 + \sigma_2 e_{578},$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 + i\sigma_2 = \pm \sqrt{w}$ and z and w are complex numbers satisfying |z| = 42, |w| = 31, z + w = 17.

Case $E_6(a_1)$. In this case

$$H = 12h_3 + 22h_4 + 30h_5 + 22h_6 + 12h_7 + 16h_8$$

and R_1 is the same as in case $E_8(a_1)$ except that the roots $\lambda_1 - \lambda_2$ and $\lambda_2 - \lambda_3$ should be omitted. A solution X of (1) is given by

$$X = \sqrt{12}e_3^4 + \rho_1 e_4^5 + \sigma_1 e_6^7 + \sqrt{12}e_7^8 + 4e_{678} + \rho_2 e_4^6 + \sigma_2 e_5^7,$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 - i\sigma_2 = \pm \sqrt{w}$, and z and w are complex numbers satisfying |z| = |w| = 22, z + w = -16. This completes the proof of the lemma.

5. Proof that ψ is surjective. Let E be a nonzero nilpotent element in \mathfrak{p} . We have to show that there exists a complex Cayley triple (X, H, Y) such that $X \in K \cdot E$. The proof is by induction on the dimension of \mathfrak{g} .

We can embed E in a normal \mathfrak{sl}_2 -triple (E, H, F). Since H is a real semisimple element it is K-conjugate to an element of $i\mathfrak{k}_0$. Hence by replacing this triple by a suitable K-conjugate we may assume that $H \in i\mathfrak{k}_0$.

Let $\mathfrak{s} = \bigoplus \mathfrak{s}_k$, $k \in \mathbb{Z}$, be the **Z**-graded subalgebra of the **Z**₂-graded algebra $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ defined as follows:

$$\mathfrak{s}_k = \{ X \in \mathfrak{k} \colon [H, X] = 2kX \}$$

for k even and

$$\mathfrak{s}_k = \{ X \in \mathfrak{p} \colon [H, X] = 2kX \}$$

for k odd. Clearly $E \in \mathfrak{s}_1$ and by a result of Vinberg [12, Lemma 2] \mathfrak{s} is reductive. If $\mathfrak{s} \neq \mathfrak{g}$ then the induction hypothesis can be applied to the associated \mathbb{Z}_2 -graded algebra $\mathfrak{s} = \mathfrak{s} \cap \mathfrak{k} \oplus \mathfrak{s} \cap \mathfrak{p}$ and the element E.

Hence we may assume that $\mathfrak{s} = \mathfrak{g}$. Since the centralizer of H in \mathfrak{s} is \mathfrak{s}_0 , $\mathfrak{s} = \mathfrak{g}$, and $\mathfrak{s}_0 \subset \mathfrak{k}$, it follows that rank $\mathfrak{k} = \operatorname{rank} \mathfrak{g}$. Let us fix a Cartan subalgebra \mathfrak{h}_0 of \mathfrak{k}_0 such that $iH \in \mathfrak{h}_0$. Set $\mathfrak{h} = \mathfrak{h}_0 + i\mathfrak{h}_0$.

By a theorem of Vinberg and Elašvili [13, p. 223] there exist $X \in K \cdot E$ and a regular semisimple subalgebra \mathfrak{t} of \mathfrak{g} normalized by \mathfrak{h} such that $X \in \mathfrak{t}$ and X is a semiregular nilpotent element of \mathfrak{t} .

Since \mathfrak{h} normalizes \mathfrak{t} , it follows that the \mathbb{Z}_2 -grading $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ induces a \mathbb{Z}_2 -grading on \mathfrak{t} , i.e., that $\mathfrak{t} = \mathfrak{t} \cap \mathfrak{k} \oplus \mathfrak{t} \cap \mathfrak{p}$. If $\mathfrak{t} \neq \mathfrak{g}$ then the inductive hypothesis can be applied to \mathfrak{t} and X. Hence we may assume that $\mathfrak{t} = \mathfrak{g}$, i.e., that E is a semiregular nilpotent element of \mathfrak{g} .

By Lemma 1 the **Z**-graded algebra $\mathfrak{g}=\mathfrak{s}=\bigoplus\mathfrak{s}_k$ is flat and E is a generic element of \mathfrak{s}_1 . Since $H\in i\mathfrak{h}_0\subset i\mathfrak{k}_0$, we have $\sigma(H)=-H$ and consequently $\sigma(\mathfrak{s}_k)=\mathfrak{s}_{-k}$ for all k.

Assume that there is an $X \in \mathfrak{s}_1$ such that $[X, \sigma(X)] = H$. Then $(X, H, -\sigma(X))$ is a complex Cayley triple and by a result of Kostant and Rallis [8, Lemma 4] the normal \mathfrak{sl}_2 -triples (E, H, F) and $(X, H, -\sigma(X))$ are K-conjugate.

Hence it suffices to prove the existence of an element $X \in \mathfrak{s}_1$ such that $[X, \sigma(X)] = H$. Since every flat Lie algebra is a direct product of simple flat Lie algebras we have

$$(\mathfrak{g}, H/2) = (\mathfrak{g}^{(1)}, H_1/2) \times \cdots \times (\mathfrak{g}^{(m)}, H_m/2)$$

where each $(\mathfrak{g}^{(k)}, H_k/2)$ is a simple flat Lie algebra and $H = H_1 + \cdots + H_m$. This shows that without any loss of generality we may now assume that \mathfrak{g} is simple.

In Lemma 3 we have shown that in the case of simple flat Lie algebras the equation $[X, \sigma(X)] = H$ indeed has a solution for X. This completes the proof of the conjecture.

Addendum (February 1987). The maps ϕ and ψ_0 defined in §3 are in fact bijective. In view of the results mentioned there and our main theorem, the claim follows from the following proposition.

PROPOSITION. The map ϕ is injective.

PROOF. Let (E, H, F) and (E', H', F') be two real Cayley triples with $E' \in G_0 \cdot E$. By [3, Chapter VIII, §11, Lemma 4] these triples are G_0 -conjugate. By

using [9, Proposition 1.1] it follows that $E' - F' \in K_0 \cdot (E - F)$. Hence we may assume that E' - F' = E - F = Z, say. Let G_0^Z (resp., K_0^Z) be the centralizer of Z in G_0 (resp., K_0). Fix a maximal compact subgroup M of G_0^Z containing K_0^Z . If $x \in M$ write $x = y \exp(X)$ with $y \in K_0$ and $X \in \mathfrak{p}_0$. By using an argument of L. Preiss-Rothschild [9, Proof of Proposition 1.1] it follows from $\exp(X) \cdot Z = y^{-1} \cdot Z$ that $y^{-1} \cdot Z = Z$. Hence $y \in K_0^Z$, $\exp(X) \in M$ and since M is compact we must have X = 0. Thus $M = K_0^Z$.

By [8, p. 779] $\mathfrak{g}_0^Z = \mathfrak{k}_0^Z \oplus \mathfrak{p}_0^Z$ is a Cartan decomposition of \mathfrak{g}_0^Z and consequently $G_0^Z = K_0^Z \cdot \exp(\mathfrak{p}_0^Z)$.

If $a \in G_0$ is an element which maps the triple (E, H, F) to (E', H', F') then $a \in G_0^Z$ and $a \cdot (E + F) = E' + F'$. Write $a = b \exp(Y)$ with $b \in K_0^Z$ and $Y \in \mathfrak{p}_0^Z$. Then by applying the above mentioned argument to $\exp(Y) \cdot (E + F) = b^{-1} \cdot (E' + F')$ we infer that $b^{-1} \cdot (E' + F') = E + F$. Thus $b \in K_0$ sends (E, H, F) to (E', F', H').

ADDED IN PROOF. After this paper was written D. King informed me that Jiro Sekiguchi had also proved Kostant's conjecture (by a different method) in a preprint entitled *Remarks on real nilpotent orbits of a symmetric pair*.

REFERENCES

- L. V. Antonyan, Classification of four-vectors of the eight-dimensional space, Trudy Sem. Vektor. Tenzor. Anal. no. 20, Moscow University, 1981, pp. 144-161.
- D. Barbasch, Fourier inversion for unipotent invariant integrals, Trans. Amer. Math. Soc. 249 (1979), 51-83.
- 3. N. Bourbaki, Groupes et algèbres de Lie, Chapitres VII et VIII, Hermann, Paris, 1975.
- D. Ž. Djoković, Classification of trivectors of an eight-dimensional real vector space, Linear and Multilinear Algebra 13 (1983), 3-39.
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. 30 (1953), 349–462;
 English transl., Amer. Math. Soc. Transl. (2) 6 (1957), 111–245.
- G. B. Elkington, Centralizers of unipotent elements in semisimple algebraic groups, J. Algebra 23 (1972), 137-163.
- 7. D. R. King, The Cayley transform of a nilpotent conjugacy class in a real semi-simple Lie algebra (preprint).
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
- 9. L. Preiss-Rothschild, Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc. 168 (1972), 403-421.
- E. B. Vinberg, Discrete linear groups generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1072-1112.
- On the classification of the nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR 225 (1975), 745-748=Soviet Math. Dokl. 16 (1975), 1517-1520.
- 12. _____, Classification of the homogeneous nilpotent elements of a semisimple graded Lie algebra, Trudy Sem. Vektor. Tenzor. Anal., no. 19, Moscow University, 1979, pp. 155-177.
- E. B. Vinberg and A. G. Elašvili, Classification of tri-vectors of the 9-dimensional space, Trudy Sem. Vektor. Tenzor. Anal., no. 18, Moscow University, 1978, pp. 197-233.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1